【资料图】
1、2.假设方差不齐时又有一系列的分析方法可选。
2、 再者,为保证统计准确,如果方差不齐,可以进行对数,倒数或函数的转换,选择适当的转换形式,直到齐性检验变为不显著。
3、 如果还不行就只能用非参数的单因素分析。
4、如果非要进行方差分析则需要把means±SD范围外的数据剔除。
5、 实际操作中对方差齐性等适用条件的把握: 1.单因素方差分析:根据BOX的研究结果,在单因素方差分析中,如果各组的例数相同(即均衡),或总体呈正态分布,则方差分析模型对方差略微不齐有一定的耐受力,只要最大与最小方差之比小于3,分析结果都是稳定的 2.单元格内无重复数据的方差分析分析:以配伍设计的方差分析最为典型,此时不需要考虑正态性和方差齐性问题,原因在于正态性和方差齐性的考察是以单元格为基本单位的,此时每个格子中只有一个元素,当然没法分析了.除配伍设计的方差分析外,交叉设计,正交设计等也可以出现无重复数据的情况.但必须指出,这里只是因条件不足,无法考察适用条件,而不是说可以完全忽视这两个问题.如果根据专业知识认为可能在不同单元格内正态性,方差齐性有问题,则应当避免使用这种无重复数据的设计方案. 3.有重复数据的多因素方差分析:由于正态性,方差齐性的考察以单元格为基本单位,此时单元格数目往往很多,平均每个单元格内的样本粒数实际上比较少。
6、此时实际上很难检验出差别;另一方面,也可能只是因为极个别单元格方差不齐而单质检验不能通过。
本文就为大家分享到这里,希望小伙伴们会喜欢。